skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tang, Tiffany"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigate the chemical abundance distributions of the Fornax, Sculptor, Ursa Minor, and Draco dwarf galaxies using Subaru/Hyper Suprime-Cam (HSC) photometric data. The HSC data set, which includes broadbandgandifilters and the narrowband NB515 filter, offers sensitivity to iron and magnesium abundances, as well as surface gravity, enabling the identification of giant stars and foreground dwarfs. For analysis, we selected a total of 6713 giant candidates using a random forest regressor trained on medium-resolution (R∼ 6000) Keck/Deep Imaging Multi-Object Spectrograph spectroscopic data. Our analysis reveals the extent of radial metallicity gradients in the galaxies. Such trends, not detectable in earlier studies, are now captured owing to the substantially enlarged sample size and areal coverage provided by the HSC data. These results are also consistent with chemical abundance patterns previously observed in the central regions through spectroscopic studies. Furthermore, we infer that Fornax underwent extended star formation, whereas Sculptor formed both metal-poor and metal-rich stars over a shorter time. Ursa Minor and Draco appear to have experienced brief, intense star formation episodes leading to nearly extinguished star formation. This study underscores the critical role of the expanded HSC data set in revealing chemical gradients that were previously inaccessible. Future work incorporating additional spectra of metal-poor stars and age-sensitive isochrone modeling will enable more accurate maps of chemical abundance distributions. 
    more » « less
    Free, publicly-accessible full text available August 4, 2026